
Multi-discipline, Multi-tool Simulation Developments

 John G Pearce

ISIM International Simulation Limited

161 Claremont Road

Salford, M6 8PA, UK

John.Pearce@isimsimulation.com

Ryllan J Kraft

ISIM International Simulation Limited

1 St Crispins Close

London, NW3 2QF, UK

Ryllan.Kraft@isimsimulation.com

Key Words: Multi-discipline, Multi-tool, Large-scale, ESL,
VTB

Abstract

 The paper addresses issues relating to the integration of

simulation tools with the objective of providing greater

flexibility and efficiency of model development. A specific

example of a current research activity aimed at

incorporating the functionality of the ESL simulation tool

within the Virtual Test Bed (VTB) is described. A brief

introduction to ESL and VTB is presented in which the

philosophies and strengths of the two packages are
described, together with a summary of earlier work resulting

in the ability to incorporate externally generated ESL

models within VTB simulations. This leads to the

specification of an initial set of goals aimed at achieving

much greater integration of the two simulation packages –

the ultimate objective being to replicate the functionality of

ESL within the VTB. A description of underlying principles

of the method being developed to achieve these goals is

presented. Essentially this involves the inclusion of the set

of basic ESL simulation elements with the VTB allowing

the construction of ESL style block diagrams. Infrastructure

is provided to map the ESL block diagrams into a form that
can be executed by the VTB as any other VTB simulation.

The current stage of the work is illustrated with a simple

example and a set of further goals aimed at extending the

ESL functionality available from the VTB is presented. The

potential improvements in efficiency and effectiveness of

simulation development through such integrated

environments are discussed.

1. INTRODUCTION

 Large-scale simulations often require the integration of

numerous models developed using diverse tools and
programming languages. For example tools for

implementing electronic circuit simulations are not suitable

for modelling mechanical dynamics. Control engineers also

have their preferred software packages. The grand

challenge is to integrate these diverse models within a single

unified environment from which the whole simulation can

be managed. This poses many problems: different

simulation tools will generate models in different target
code; mechanisms for interacting with individual models

will vary considerably; the resolution or granularity of

different models will also vary.

 An on-going research project which aims to address

these issues is the development of the Virtual Test Bed

(VTB) by the University of South Carolina, USA [Dougal

2005]. The VTB is a software environment for developing

simulations of large scale multidisciplinary dynamic

systems. It allows alternative designs to be analysed and

tested before being committed to manufacture. The main

application that is driving the development of the VTB is a
need to model advanced power systems for navy ships. In

such systems there are many different energy generation and

storage devices including nuclear, fuel cells and gas

turbines. The distribution networks are also of

unconventional design having dc power buses and high

numbers of interconnections that can be rapidly

reconfigured. Constructing complete coherent simulations

of such large scale systems, involving widely differing

technologies poses a serious challenge. Each discipline

group will use their preferred simulation tool to model their

part of the whole system. The VTB aims to satisfy this

challenge by providing a common platform in which entity
models developed by different teams using different tools

can be merged.

 Complete models developed in their native

environments outside the VTB can be imported and

combined with other models. However, the VTB provides a

means of achieving greater integration by supporting a

range of internal solvers. Typically a VTB simulation is

constructed by interconnecting primary simulation elements

or entities. Each type of entity is supported by its own

solver. For example, The VTB provides: DAE, Phasor,

signal and Natural solvers as standard, but the developer is
at liberty to introduce his own solvers to support his own

flavour of entities. This solver concept allows for greater

integration of external simulation tools with the VTB. This

paper describes current developments to integrate the ESL

simulation tool with the VTB.

 ESL [Crosbie et al 1981, Hay et al 1994, Pearce and

Crosbie 2000] is an advanced high-level simulation

mailto:John.Pearce@isimsimulation.com
mailto:Ryllan.Kraft@isimsimulation.com

language for modelling large-scale systems from a variety

of disciplines. ESL is an acronym of the European

Simulation Language (originally European Space Agency

Simulation Language) and comprises two components: the

language itself and a graphical user interface - the Integrated

Simulation Environment (ISE). ESL is a continuous system
simulation language and is used for modelling dynamic

systems which are usually described by ordinary and partial

differential equations. ISE provides the environment from

which all stages of the simulation process can be managed.

The software was developed mainly through a series of

contracts with ESTEC - the European Space Research and

Technology Centre - part of ESA with additional support

from various industrial simulation consultancy activities.

2. BACKGROUND

 Previous work [Pearce, 2007, 2008] saw the ability to

include complete ESL models in VTB schematics using
COM technology (with VTB 2003) and later .NET

technology (VTB 2009 and VTB Pro). Here the starting

point is an ESL model, which may have been created as

ESL source code or via ESL’s Integrated Simulation

Environment. The model is cast as an embedded segment (a

particular form of model that can be readily embedded in

other non-ESL programs). The embedded segment is

compiled as a .NET assembly which is then processed by

the VTB Entity Designer program to create an ESL Entity.

The ESL Entity is then accessible from the VTB Schematic

Designer and can be included in a schematic diagram with
other non-ESL entities. The Entity creation process for a dc

motor model is shown in Figure 1.

Dc_motor

Dc_motor_clr.dll

eslgenESL embedded

segment ESL utility

.NET assembly

Entity Designer VTB component

User interaction –

design icon etc

VTB utility
VTB entityESL importer now

part of Entity

Designer

Figure 1 ESL Entity creation process

 At simulation run-time, the VTB invokes the ESL
Entity at each time-step to advance its part of the solution,

as shown in Figure 2

 At this stage complete ESL models, created outside

VTB, may be combined with non-ESL entities in a whole

VTB schematic to create a complete multi-solver

simulation.

.NET assemblyCreated using Eslgen

ESL Entity
Created using VTB

Entity Designer

Virtual Test Bed

Figure 2 VTB – ESL .NET execution sequence

3. TOWARDS GREATER INTEGRATION

 As part of a current ONR funded research project, ways

of achieving greater integration between simulation tools are

being investigated through the particular example of the

VTB – ESL relationship. These developments are based on

VTB 2011.

 A primary objective was to replicate in the VTB a

subset of the functionality currently available in ESL. This

entailed:

• Provision of a set of entities in the VTB corresponding

to the standard ESL simulation elements. These would
be displayed in the VTB Schematic Editor when the

ESL Solver was selected on the Component Library

filter.

• Ability to create a schematic diagram by placing and

connecting ESL entities (for the primary objective there

would be no connection to non ESL entities).

• Ability to specify ESL entity parameters (corresponding

to ESL simulation element attributes).

• Ability to select ESL entity input and output ports for

graph plotting.

• Ability to specify ESL Solver parameters
(corresponding to ESL Simulation Parameters –

integration method, error tolerances number of

integration steps per communication interval etc).

• Interactive running of the simulation including the

ability to pause and dynamically change ESL entity and

ESL Solver parameters.

• Ability to extend the standard set of ESL entities.

4. INTEGRATION SOLUTION

4.1. Basics

 VTB 2011 comprises Entity Designer which allows a

user to create new simulation entities (primary simulation
elements from which a diagram can be constructed) with

their ports and Schematic Designer, which lets a user

construct a diagram of simulation entities, connect their

ports and from which the simulation can be run. Within

VTB there are several standard Solvers for handling

different types of entity – Signal Solver, Natural Solver,

DAE Solver, and Phasor Solver etc. Developers can add

their own solvers by creating a .NET assembly that supports

the appropriate VTB interfaces. The VTB framework will
load the assembly into the Entity and Schematic Designer

facilities, and invoke relevant code within it.

 ISIM has developed an ESL Solver assembly for

incorporation into VTB, building on a template/example

project provided by USC.

• This supports the input and output ports that can

connect ESL entities (these may be used to create user

defined extension entities in the Entity Designer).

• It provides a set of built-in entities (equivalent to the

standard set of ESL simulation elements).

• It has code that will be invoked when the user starts a

run of the simulation in the Schematic Designer (Run
code).

• It has code to handle each step of the simulation (Step

code).

• There is also code to handle changes of simulation

parameters at a pause in a running simulation, and in

the engines of the built-in entities to support changes in

parameters.

4.2. ESL entity creation

New VTB entities are created in Entity Designer

where the appearance of the entity; its input and output
ports; parameters and associated engine within the solver

are specified. ESL entities have their own unique I/O port

types ensuring they can only be connected to like entities.

For the standard built-in entities, ESL code associated with

an entity is identified by a special EslIseClass parameter

which relates to a fragment of built-in XML code, which

acts as a template (see XML fragment in Figure 4). To

provide the ability to extend the set of ESL entities, a user

may specify the associated XML code directly through an

EslEntityXml parameter as shown in Figure 3

<entity >

<attribute type='Real' tag='K' name='Coefficient' value='1.0'/>

<port type='Real' tag='x' direction='Input'/>

<port type='Real' tag='y' direction='Output' nopackage='true'/>

<generate>

<dynamic>

{O:y} := {A:K} * {I:x};

</dynamic>

</generate>

</entity>

Figure 3 Setting the EslEntityXml parameter

<GenerateEsl>
<entity EslIseClass='appAbsoluteAbs'>
 <port type='Real' tag='x' direction='Input'/>
 <port type='Real' tag='y' direction='Output'
nopackage='true'/>
 <generate>
 <include>absx</include>
 <dynamic>
 {O:y} := ABSX({I:x});
 </dynamic>
 </generate>
</entity>
<entity EslIseClass='appAcosineAbs'>
 <port type='Real' tag='x' direction='Input'/>
 <port type='Real' tag='y' direction='Output'
nopackage='true'/>
 <generate>
 <dynamic>
 {O:y} := ACOS({I:x});
 </dynamic>
 </generate>
</entity>

Figure 4 Fragment of code generation XML

4.3. Run code
 When the user invokes a run of a simulation in the

Schematic Designer, the ESL Solver invokes a singleton

EslProgram object to handle it. This goes through the

following sequence (if no errors are encountered):

• In the Gather phase it runs through the entities in the

simulation diagram to identify entities which it can

handle.

• It identifies entities which have an EslIseClass

parameter as built-in entities, and those with a

EslEntityXml parameter as extension entities that have

been developed according to the required conventions.

• For built-in entities it obtains an XML fragment from
the built-in source that defines the required ESL code.

• For extension entities it uses the XML fragment from

the EslEntityXml parameter value for this purpose.

• Next it analyses the entity, and creates a mapping

between the attributes specified in the XML fragment

and VTB parameter, and maps the input and output

ports specified in the XML with VTB ports. It also

flags up whether the VTB parameter is allowed to

change at runtime and whether a VTB port is specified

for output, noting these as needing to be set

appropriately in a simulation step.
• Having constructed the representation of ESL entities in

the simulation diagram, in the Generate phase, it

generates ESL code making use of the templates in the

XML fragment for each entity. This code is written as a

temporary file (EslGenerated.esl). The code for the

ESL model is expressed as an ESL embedded segment

form so it will be able to be used in .NET. (Other ways

of incorporating the ESL model have been considered,

but this is currently viewed as the most efficacious

approach).

• Next, in the Run phase, the standard ESL eslgen facility

is invoked, which creates a .NET assembly

(EslGenerated_clr.dll) representing the ESL model for

the schematic diagram.
• Because this is changed for every fresh run of the

simulation, this assembly cannot be directly loaded by

the ESL Solver. Instead a proxy for the ESL model is

used, and a separate assembly (EslModelAccess.dll)

which runs in a separate .NET AppDomain (which is

unloaded at the start of this phase) wraps the ESL

model proxy which can load the ESL model assembly.

• Next some look up information for the ESL variables

who's values may need to be input or output into the

VTB framework is obtained, for efficiency in a

simulation step.

• Then the ESL model (via the proxy) is initialised and
made ready for the first simulation step.

4.4. Step code

 When the VTB framework moves the simulation

forward a step, the ESL Solver uses the EslProgram object

to perform the advance of the simulation (it also does this at

the beginning of a simulation). This code does the

following:

• It obtains the values ESL model variables that have

been designated as needing to be set in a step (via the

proxy), and sets the corresponding VTB port values.
• Then it invokes the ESL model (via the proxy) to run

forward to the next ESL communication interval

(corresponds to the VTB step).

 The sequence of operations is shown in Figure 5 and

Figure 6.

ESL code

ESL model

representation

processing

code

generation

VTB Schematic

Compilation – .NET

assembly generation ESL model

representation effectively

replaces selection and is

run under ESL solver

Figure 5 Integration cycle

ESLSolver

InitializeSolver

VTB – ESL Solver

GATHER

scans VTB schematic &

collects information

about ESL entities

GENERATE

creates ESL code

RUN

generates .NET assembly

loads assembly

initializes assembly

STEP

advances simulation by

one time-step

NullStep

Step

ESL compiler

ESL translator

ESL run-time

External ESL

programs

C++ compiler

ESL Solver

Figure 6 Implementation details

5. SOME RESULTS

 An example of a VTB schematic for a servo system,

consisting entirely of ESL entities, is shown in Figure 7.

Figure 7 ESL in VTB schematic for Servo System

 Figure 8 shows graphical results for the system

compared with a corresponding plot generated in ESL.

Figure 8 VTB and ESL Servo System results

6. THE NEXT STAGE

 The primary objectives stated in section 3 have been

achieved. The next stage is to replicate full ESL

functionality. This entails:

• Allow the user to specify part of an ESL simulation as

ESL textual code. Ideally a user would be able to open
a text editor from the VTB and enter code in the form

of an ESL submodel (as is the case with ISE). When the

text editor is closed, the submodel would appear in the

list of ESL components (or in a separate list) ready for

inclusion in an ESL schematic. This feature, in some

form, is considered essential as it gives the user access

to the full power of the ESL language.

• Allow a user to import submodels from an external ESL

library directory. Such imported submodels would then

appear as ESL components in the Component Library.

As with above, this implies the automatic generation of

a default icon for the submodel.
• Allow the user to designate an ESL schematic (or a

selection of an ESL schematic) as a submodel. The

newly specified submodel would be available from the

list of ESL components. It is possible this could be

achieved through the VTB sub-system concept.

• Allow the construction and execution of a schematic

comprising both coupled ESL components and non-

ESL components (i.e. those requiring a different

solver). This will require special coupling components

having both ESL and Signal ports.

7. LESSONS LEARNED

 The primary objective of this on-going research project

is to look at ways of improving the ability to work with

widely differing simulation tools in an efficient and

productive manner. The VTB was designed with this

objective specifically in mind and it is not surprising

therefore that the integration of a third-party product, ESL,

has been relatively straight-forward so far. The ease with

which such integration can be implemented depends largely

on the availability of good well defined interfaces in the

host software and a flexible modular structure in the

integrating package. This was the case with the VTB and
ESL software. The aim in this particular phase of the

development was to retain the specific look and feel of ESL

while taking advantage of features of the host software not

offered in ESL (3D animation and access to an extensive

range of native simulation entities, for example). A good

working approach has been established and ideas such as the

use of XML templates for code generation and the use,

where ever possible, of existing external programs (ESL

compiler, translator and eslgen utility) have proved

successful. The fact that the original developers of ESL

were responsible for the integration has undoubtedly eased
the task and highlights the need for a close relationship

between the developers of both the host product and the

product being integrated. While all simulation tools are

different, it is believed that the approaches and techniques

used in this exercise could be considered if the integration

of other third-party simulation tools was anticipated.

Whilst at this stage of the development it is difficult to

quantify the improvements in efficiency and effectiveness of
the simulation process that may result from the work

described here, it is believed that such improvements will

result from the following:

• The user has access, from a common environment, to

the functionality of a range of alternative simulation

tools, each offering particular features and advantages.

• When accessing a particular tool, the appearance of

basic simulation components and diagrammatic

representation closely resembles those of the native

package.

• As the project develops, integration of the portions of

the simulation created using different tools will be
automatically taken managed by the host package.

8. CONCLUSION

 Large-scale simulations require the use of widely

differing modelling tools. Problems associated with the

integration of such tools have been examined and a

particular case study of the integration of ESL and the VTB

has been described. The result of this integration is to allow

the appearance and functionality of one simulation tool to be

replicated within another, giving the user access to a wider

range of options within a single environment.

 Acknowledgements

 This research has been supported by the Office of

Naval Research through Award No. N00014-10-1-0625.

The author also acknowledges the contributions of Blake

Langland and Rod Leonard of the University of South

Carolina.

 References

 Crosbie, R.E., Hay, J.L. and Pearce, J.G. 1981.

“Simulation Studies with Modern Computer Structures”.

Final Report, (ESTEC Contract 4155/79), ESTEC,
Noordwijk, The Netherlands.

 Dougal, R.A. 2005. “Design Tools for Electric Ship

Systems.” In Proceedings of IEEE Electric Ship

Technologies Symposium, (Philadelphia PA, July 25-27).

IEEE, 8-11.

 Hay, J.L., Pearce, J.G., Crosbie, R.E. and Pallett, S.

1994. “ESL Simulation Tool”. Final Report, (ESTEC

Contract 10011/92/NL/JG Work Order No. 2), ESTEC,

Noordwijk, The Netherlands.

 Pearce, J.G. 2007. “Interfacing the ESL Simulation

Language to the Virtual Test Bed”. In Proceedings of the

2007 Western Multiconference on Computer Simulation,

(San Diego, CA, Jan 14-17). SCS, San Diego, CA, 166-171.

 Pearce, J.G. 2008. “Simulation advances using the ESL
Simulation Language and the Virtual Test Bed”. In

Proceedings of the 2008 Grand Challenges in Modeling &

Simulation Conference (GCMS), (Edinburgh, Scotland UK,

June 16-18). SCS, San Diego, CA, 285-290.

 Pearce, J.G. and Crosbie, R.E. 2000. “ESL-ISE - A

Simulation Tool Developed for the Space Industry”. In

Proceedings of the 2000 International Conference on

Simulation and Multimedia in Engineering Education, (San

Diego, CA, Jan 23-27). SCS, San Diego, CA, 115-120.

