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Abstract 

 The paper addresses issues relating to the integration of 

simulation tools with the objective of providing greater 

flexibility and efficiency of model development. A specific 

example of a current research activity aimed at 

incorporating the functionality of the ESL simulation tool 

within the Virtual Test Bed (VTB) is described. A brief 

introduction to ESL and VTB is presented in which the 

philosophies and strengths of the two packages are 
described, together with a summary of earlier work resulting 

in the ability to incorporate externally generated ESL 

models within VTB simulations. This leads to the 

specification of an initial set of goals aimed at achieving 

much greater integration of the two simulation packages – 

the ultimate objective being to replicate the functionality of 

ESL within the VTB. A description of underlying principles 

of the method being developed to achieve these goals is 

presented. Essentially this involves the inclusion of the set 

of basic ESL simulation elements with the VTB allowing 

the construction of ESL style block diagrams. Infrastructure 

is provided to map the ESL block diagrams into a form that 
can be executed by the VTB as any other VTB simulation. 

The current stage of the work is illustrated with a simple 

example and a set of further goals aimed at extending the 

ESL functionality available from the VTB is presented. The 

potential improvements in efficiency and effectiveness of 

simulation development through such integrated 

environments are discussed. 

 

1. INTRODUCTION 

 Large-scale simulations often require the integration of 

numerous models developed using diverse tools and 
programming languages. For example tools for 

implementing electronic circuit simulations are not suitable 

for modelling mechanical dynamics. Control engineers also 

have their preferred software packages. The grand 

challenge is to integrate these diverse models within a single 

unified environment from which the whole simulation can 

be managed. This poses many problems: different 

simulation tools will generate models in different target 
code; mechanisms for interacting with individual models 

will vary considerably; the resolution or granularity of 

different models will also vary. 

 An on-going research project which aims to address 

these issues is the development of the Virtual Test Bed 

(VTB) by the University of South Carolina, USA [Dougal 

2005]. The VTB is a software environment for developing 

simulations of large scale multidisciplinary dynamic 

systems. It allows alternative designs to be analysed and 

tested before being committed to manufacture. The main 

application that is driving the development of the VTB is a 
need to model advanced power systems for navy ships. In 

such systems there are many different energy generation and 

storage devices including nuclear, fuel cells and gas 

turbines. The distribution networks are also of 

unconventional design having dc power buses and high 

numbers of interconnections that can be rapidly 

reconfigured. Constructing complete coherent simulations 

of such large scale systems, involving widely differing 

technologies poses a serious challenge. Each discipline 

group will use their preferred simulation tool to model their 

part of the whole system. The VTB aims to satisfy this 

challenge by providing a common platform in which entity 
models developed by different teams using different tools 

can be merged. 

 Complete models developed in their native 

environments outside the VTB can be imported and 

combined with other models. However, the VTB provides a 

means of achieving greater integration by supporting a 

range of internal solvers. Typically a VTB simulation is 

constructed by interconnecting primary simulation elements 

or entities. Each type of entity is supported by its own 

solver. For example, The VTB provides: DAE, Phasor, 

signal and Natural solvers as standard, but the developer is 
at liberty to introduce his own solvers to support his own 

flavour of entities. This solver concept allows for greater 

integration of external simulation tools with the VTB. This 

paper describes current developments to integrate the ESL 

simulation tool with the VTB. 

 ESL [Crosbie et al 1981, Hay et al 1994, Pearce and 

Crosbie 2000] is an advanced high-level simulation 
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language for modelling large-scale systems from a variety 

of disciplines. ESL is an acronym of the European 

Simulation Language (originally European Space Agency 

Simulation Language) and comprises two components: the 

language itself and a graphical user interface - the Integrated 

Simulation Environment (ISE).  ESL is a continuous system 
simulation language and is used for modelling dynamic 

systems which are usually described by ordinary and partial 

differential equations.  ISE provides the environment from 

which all stages of the simulation process can be managed. 

The software was developed mainly through a series of 

contracts with ESTEC - the European Space Research and 

Technology Centre - part of ESA with additional support 

from various industrial simulation consultancy activities. 

 

2. BACKGROUND 

 Previous work [Pearce, 2007, 2008] saw the ability to 

include complete ESL models in VTB schematics using 
COM technology (with VTB 2003) and later .NET 

technology (VTB 2009 and VTB Pro). Here the starting 

point is an ESL model, which may have been created as 

ESL source code or via ESL’s Integrated Simulation 

Environment. The model is cast as an embedded segment (a 

particular form of model that can be readily embedded in 

other non-ESL programs). The embedded segment is 

compiled as a .NET assembly which is then processed by 

the VTB Entity Designer program to create an ESL Entity. 

The ESL Entity is then accessible from the VTB Schematic 

Designer and can be included in a schematic diagram with 
other non-ESL entities. The Entity creation process for a dc 

motor model is shown in Figure 1. 
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eslgenESL embedded 

segment ESL utility
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Designer  

Figure 1 ESL Entity creation process 

 At simulation run-time, the VTB invokes the ESL 
Entity at each time-step to advance its part of the solution, 

as shown in Figure 2 

 At this stage complete ESL models, created outside 

VTB, may be combined with non-ESL entities in a whole 

VTB schematic to create a complete multi-solver 

simulation. 

 

.NET assemblyCreated using Eslgen

ESL Entity
Created using VTB 

Entity Designer

Virtual Test Bed

 

Figure 2 VTB – ESL .NET execution sequence 

  

3. TOWARDS GREATER INTEGRATION 

 As part of a current ONR funded research project, ways 

of achieving greater integration between simulation tools are 

being investigated through the particular example of the 

VTB – ESL relationship. These developments are based on 

VTB 2011. 

 A primary objective was to replicate in the VTB a 

subset of the functionality currently available in ESL. This 

entailed: 

• Provision of a set of entities in the VTB corresponding 

to the standard ESL simulation elements. These would 
be displayed in the VTB Schematic Editor when the 

ESL Solver was selected on the Component Library 

filter. 

• Ability to create a schematic diagram by placing and 

connecting ESL entities (for the primary objective there 

would be no connection to non ESL entities). 

• Ability to specify ESL entity parameters (corresponding 

to ESL simulation element attributes). 

• Ability to select ESL entity input and output ports for 

graph plotting. 

• Ability to specify ESL Solver parameters 
(corresponding to ESL Simulation Parameters – 

integration method, error tolerances number of 

integration steps per communication interval etc). 

• Interactive running of the simulation including the 

ability to pause and dynamically change ESL entity and 

ESL Solver parameters. 

• Ability to extend the standard set of ESL entities. 

 

4. INTEGRATION SOLUTION 

4.1. Basics 

 VTB 2011 comprises Entity Designer which allows a 

user to create new simulation entities (primary simulation 
elements from which a diagram can be constructed) with 

their ports and Schematic Designer, which lets a user 

construct a diagram of simulation entities, connect their 



ports and from which the simulation can be run. Within 

VTB there are several standard Solvers for handling 

different types of entity – Signal Solver, Natural Solver, 

DAE Solver, and Phasor Solver etc. Developers can add 

their own solvers by creating a .NET assembly that supports 

the appropriate VTB interfaces. The VTB framework will 
load the assembly into the Entity and Schematic Designer 

facilities, and invoke relevant code within it. 

 ISIM has developed an ESL Solver assembly for 

incorporation into VTB, building on a template/example 

project provided by USC. 

• This supports the input and output ports that can 

connect ESL entities (these may be used to create user 

defined extension entities in the Entity Designer). 

• It provides a set of built-in entities (equivalent to the 

standard set of ESL simulation elements). 

• It has code that will be invoked when the user starts a 

run of the simulation in the Schematic Designer (Run 
code). 

• It has code to handle each step of the simulation (Step 

code). 

• There is also code to handle changes of simulation 

parameters at a pause in a running simulation, and in 

the engines of the built-in entities to support changes in 

parameters. 

 

4.2. ESL entity creation 

New VTB entities are created in Entity Designer 

where the appearance of the entity; its input and output 
ports; parameters and associated engine within the solver 

are specified. ESL entities have their own unique I/O port 

types ensuring they can only be connected to like entities. 

For the standard built-in entities, ESL code associated with 

an entity is identified by a special EslIseClass parameter 

which relates to a fragment of built-in XML code, which 

acts as a template (see XML fragment in Figure 4). To 

provide the ability to extend the set of ESL entities, a user 

may specify the associated XML code directly through an 

EslEntityXml parameter as shown in Figure 3 

 

<entity >

<attribute type='Real' tag='K' name='Coefficient' value='1.0'/>

<port type='Real' tag='x' direction='Input'/>

<port type='Real' tag='y' direction='Output' nopackage='true'/>

<generate>

<dynamic>

{O:y} := {A:K} * {I:x};

</dynamic>

</generate>

</entity>  

Figure 3 Setting the EslEntityXml parameter 

<GenerateEsl> 
<entity EslIseClass='appAbsoluteAbs'> 
 <port type='Real' tag='x' direction='Input'/> 
 <port type='Real' tag='y' direction='Output' 
nopackage='true'/> 
 <generate> 
  <include>absx</include> 
  <dynamic> 
  {O:y} := ABSX({I:x}); 
  </dynamic> 
 </generate> 
</entity> 
<entity EslIseClass='appAcosineAbs'> 
 <port type='Real' tag='x' direction='Input'/> 
 <port type='Real' tag='y' direction='Output' 
nopackage='true'/> 
 <generate> 
  <dynamic> 
  {O:y} := ACOS({I:x}); 
  </dynamic> 
 </generate> 
</entity> 

Figure 4 Fragment of code generation XML 

4.3. Run code 
 When the user invokes a run of a simulation in the 

Schematic Designer, the ESL Solver invokes a singleton 

EslProgram object to handle it. This goes through the 

following sequence (if no errors are encountered): 

• In the Gather phase it runs through the entities in the 

simulation diagram to identify entities which it can 

handle. 

• It identifies entities which have an EslIseClass 

parameter as built-in entities, and those with a 

EslEntityXml parameter as extension entities that have 

been developed according to the required conventions. 

• For built-in entities it obtains an XML fragment from 
the built-in source that defines the required ESL code. 

• For extension entities it uses the XML fragment from 

the EslEntityXml parameter value for this purpose. 

• Next it analyses the entity, and creates a mapping 

between the attributes specified in the XML fragment 

and VTB parameter, and maps the input and output 

ports specified in the XML with VTB ports. It also 

flags up whether the VTB parameter is allowed to 

change at runtime and whether a VTB port is specified 

for output, noting these as needing to be set 

appropriately in a simulation step. 
• Having constructed the representation of ESL entities in 

the simulation diagram, in the Generate phase, it 

generates ESL code making use of the templates in the 

XML fragment for each entity. This code is written as a 

temporary file (EslGenerated.esl). The code for the 

ESL model is expressed as an ESL embedded segment 

form so it will be able to be used in .NET. (Other ways 

of incorporating the ESL model have been considered, 



but this is currently viewed as the most efficacious 

approach). 

• Next, in the Run phase, the standard ESL eslgen facility 

is invoked, which creates a .NET assembly 

(EslGenerated_clr.dll) representing the ESL model for 

the schematic diagram. 
• Because this is changed for every fresh run of the 

simulation, this assembly cannot be directly loaded by 

the ESL Solver. Instead a proxy for the ESL model   is 

used, and a separate assembly (EslModelAccess.dll) 

which runs in a separate .NET AppDomain (which is 

unloaded at the start of this phase) wraps the ESL 

model proxy which can load the ESL model assembly. 

• Next some look up information for the ESL variables 

who's values may need to be input or output into the 

VTB framework is obtained, for efficiency in a 

simulation step. 

• Then the ESL model (via the proxy) is initialised and 
made ready for the first simulation step. 

 

4.4. Step code 

 When the VTB framework moves the simulation 

forward a step, the ESL Solver uses the EslProgram object 

to perform the advance of the simulation (it also does this at 

the beginning of a simulation). This code does the 

following: 

• It obtains the values ESL model variables that have 

been designated as needing to be set in a step (via the 

proxy), and sets the corresponding VTB port values.  
• Then it invokes the ESL model (via the proxy) to run 

forward to the next ESL communication interval 

(corresponds to the VTB step). 

 The sequence of operations is shown in Figure 5 and 

Figure 6. 
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Figure 5 Integration cycle 
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Figure 6 Implementation details 

5. SOME RESULTS 

 An example of a VTB schematic for a servo system, 

consisting entirely of ESL entities, is shown in Figure 7. 

 

 

Figure 7 ESL in VTB schematic for Servo System 

 Figure 8 shows graphical results for the system 

compared with a corresponding plot generated in ESL. 

 

 

Figure 8 VTB and ESL Servo System results 



6. THE NEXT STAGE 

 The primary objectives stated in section 3 have been 

achieved. The next stage is to replicate full ESL 

functionality. This entails: 

• Allow the user to specify part of an ESL simulation as 

ESL textual code. Ideally a user would be able to open 
a text editor from the VTB and enter code in the form 

of an ESL submodel (as is the case with ISE). When the 

text editor is closed, the submodel would appear in the 

list of ESL components (or in a separate list) ready for 

inclusion in an ESL schematic. This feature, in some 

form, is considered essential as it gives the user access 

to the full power of the ESL language. 

• Allow a user to import submodels from an external ESL 

library directory. Such imported submodels would then 

appear as ESL components in the Component Library. 

As with above, this implies the automatic generation of 

a default icon for the submodel. 
• Allow the user to designate an ESL schematic (or a 

selection of an ESL schematic) as a submodel. The 

newly specified submodel would be available from the 

list of ESL components. It is possible this could be 

achieved through the VTB sub-system concept. 

• Allow the construction and execution of a schematic 

comprising both coupled ESL components and non-

ESL components (i.e. those requiring a different 

solver).  This will require special coupling components 

having both ESL and Signal ports. 

 

7. LESSONS LEARNED 

 The primary objective of this on-going research project 

is to look at ways of improving the ability to work with 

widely differing simulation tools in an efficient and 

productive manner. The VTB was designed with this 

objective specifically in mind and it is not surprising 

therefore that the integration of a third-party product, ESL, 

has been relatively straight-forward so far. The ease with 

which such integration can be implemented depends largely 

on the availability of good well defined interfaces in the 

host software and a flexible modular structure in the 

integrating package. This was the case with the VTB and 
ESL software. The aim in this particular phase of the 

development was to retain the specific look and feel of ESL 

while taking advantage of features of the host software not 

offered in ESL (3D animation and access to an extensive 

range of native simulation entities, for example). A good 

working approach has been established and ideas such as the 

use of XML templates for code generation and the use, 

where ever possible, of existing external programs (ESL 

compiler, translator and eslgen utility) have proved 

successful. The fact that the original developers of ESL 

were responsible for the integration has undoubtedly eased 
the task and highlights the need for a close relationship 

between the developers of both the host product and the 

product being integrated. While all simulation tools are 

different, it is believed that the approaches and techniques 

used in this exercise could be considered if the integration 

of other third-party simulation tools was anticipated. 

Whilst at this stage of the development it is difficult to 

quantify the improvements in efficiency and effectiveness of 
the simulation process that may result from the work 

described here, it is believed that such improvements will 

result from the following: 

• The user has access, from a common environment, to 

the functionality of a range of alternative simulation 

tools, each offering particular features and advantages. 

• When accessing a particular tool, the appearance of 

basic simulation components and diagrammatic 

representation closely resembles those of the native 

package. 

• As the project develops, integration of the portions of 

the simulation created using different tools will be 
automatically taken managed by the host package. 

 

8. CONCLUSION 

 Large-scale simulations require the use of widely 

differing modelling tools. Problems associated with the 

integration of such tools have been examined and a 

particular case study of the integration of ESL and the VTB 

has been described. The result of this integration is to allow 

the appearance and functionality of one simulation tool to be 

replicated within another, giving the user access to a wider 

range of options within a single environment.  
 

 Acknowledgements 

 This research has been supported by the Office of 

Naval Research through Award No. N00014-10-1-0625. 

The author also acknowledges the contributions of Blake 

Langland and Rod Leonard of the University of South 

Carolina. 

 

 References 

 Crosbie, R.E., Hay, J.L. and Pearce, J.G. 1981. 

“Simulation Studies with Modern Computer Structures”. 

Final Report, (ESTEC Contract 4155/79), ESTEC, 
Noordwijk, The Netherlands. 

 

 Dougal, R.A. 2005. “Design Tools for Electric Ship 

Systems.” In Proceedings of IEEE Electric Ship 

Technologies Symposium, (Philadelphia PA, July 25-27). 

IEEE, 8-11. 

 

 Hay, J.L., Pearce, J.G., Crosbie, R.E. and Pallett, S. 

1994. “ESL Simulation Tool”. Final Report, (ESTEC 

Contract 10011/92/NL/JG Work Order No. 2), ESTEC, 

Noordwijk, The Netherlands. 
 



 Pearce, J.G. 2007. “Interfacing the ESL Simulation 

Language to the Virtual Test Bed”. In Proceedings of the 

2007 Western Multiconference on Computer Simulation, 

(San Diego, CA, Jan 14-17). SCS, San Diego, CA, 166-171. 

 

 Pearce, J.G. 2008. “Simulation advances using the ESL 
Simulation Language and the Virtual Test Bed”. In 

Proceedings of the 2008 Grand Challenges in Modeling & 

Simulation Conference (GCMS), (Edinburgh, Scotland UK, 

June 16-18). SCS, San Diego, CA, 285-290. 

 

 Pearce, J.G. and Crosbie, R.E. 2000. “ESL-ISE - A 

Simulation Tool Developed for the Space Industry”. In 

Proceedings of the 2000 International Conference on 

Simulation and Multimedia in Engineering Education, (San 

Diego, CA, Jan 23-27). SCS, San Diego, CA, 115-120. 


